Sustained Sub-60 mV/decade Switching via the Negative Capacitance Effect in MoS2 Transistors.
نویسندگان
چکیده
It has been shown that a ferroelectric material integrated into the gate stack of a transistor can create an effective negative capacitance (NC) that allows the device to overcome "Boltzmann tyranny". While this switching below the thermal limit has been observed with Si-based NC field-effect transistors (NC-FETs), the adaptation to 2D materials would enable a device that is scalable in operating voltage as well as size. In this work, we demonstrate sustained sub-60 mV/dec switching, with a minimum subthreshold swing (SS) of 6.07 mV/dec (average of 8.03 mV/dec over 4 orders of magnitude in drain current), by incorporating hafnium zirconium oxide (HfZrO2 or HZO) ferroelectric into the gate stack of a MoS2 2D-FET. By first fabricating and characterizing metal-ferroelectric-metal capacitors, the MoS2 is able to be transferred directly on top and characterized with both a standard and a negative capacitance gate stack. The 2D NC-FET exhibited marked enhancement in low-voltage switching behavior compared to the 2D-FET on the same MoS2 channel, reducing the SS by 2 orders of magnitude. A maximum internal voltage gain of ∼28× was realized with ∼12 nm thick HZO. Several unique dependencies were observed, including threshold voltage (Vth) shifts in the 2D NC-FET (compared to the 2D-FET) that correlate with source/drain overlap capacitance and changes in HZO (ferroelectric) and HfO2 (dielectric) thicknesses. Remarkable sub-60 mV/dec switching was obtained from 2D NC-FETs of various sizes and gate stack thicknesses, demonstrating great potential for enabling size- and voltage-scalable transistors.
منابع مشابه
Sub-60 mV/decade switching in 2D negative capacitance field-effect transistors with integrated ferroelectric polymer
There is a rising interest in employing the negative capacitance (NC) effect to achieve sub-60 mV/ decade (below the thermal limit) switching in field-effect transistors (FETs). The NC effect, which is an effectual amplification of the applied gate potential, is realized by incorporating a ferroelectric material in series with a dielectric in the gate stack of a FET. One of the leading challeng...
متن کاملOn the possibility of sub 60 mV/decade subthreshold switching in piezoelectric gate barrier transistors
A novel method for the reduction of subthreshold slope below the room-temperature Boltzmann limit of 60 mV/dec for a field-effect transistor based on negative differential capacitance is proposed. This effect uses electric field induced electrostriction of a piezoelectric gate barrier of the transistor. The mechanism amplifies the internal surface potential over the applied gate voltage. This i...
متن کاملSubthreshold swing improvement in MoS2 transistors by the negative-capacitance effect in a ferroelectric Al-doped-HfO2/HfO2 gate dielectric stack.
Obtaining a subthreshold swing (SS) below the thermionic limit of 60 mV dec-1 by exploiting the negative-capacitance (NC) effect in ferroelectric (FE) materials is a novel effective technique to allow the reduction of the supply voltage and power consumption in field effect transistors (FETs). At the same time, two-dimensional layered semiconductors, such as molybdenum disulfide (MoS2), have be...
متن کاملSteep switching devices for low power applications: negative differential capacitance/resistance field effect transistors
Simply including either single ferroelectric oxide layer or threshold selector, we can make conventional field effect transistor to have super steep switching characteristic, i.e., sub-60-mV/decade of subthreshold slope. One of the representative is negative capacitance FET (NCFET), in which a ferroelectric layer is added within its gate stack. The other is phase FET (i.e., negative resistance ...
متن کاملNovel Field-Effect Schottky Barrier Transistors Based on Graphene-MoS2 Heterojunctions
Recently, two-dimensional materials such as molybdenum disulphide (MoS2) have been demonstrated to realize field effect transistors (FET) with a large current on-off ratio. However, the carrier mobility in backgate MoS2 FET is rather low (typically 0.5-20 cm(2)/V · s). Here, we report a novel field-effect Schottky barrier transistors (FESBT) based on graphene-MoS2 heterojunction (GMH), where th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 17 8 شماره
صفحات -
تاریخ انتشار 2017